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Data Movement at Scale

I Computational science simulation in scientific domains such as in
materials, high energy physics, engineering, have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers
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Complex Interconnect Hierarchies

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O
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Deep Memory Hierarchies and Filesystem characteristics

I We need to exploit the deep memory hierarchy tiers for improved
performance

This includes effective ways to seamlessly use HBM, DRAM, NVRAM,
BurstBuffers, etc.

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.
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TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale on IBM BG/Q with GPFS and Cray XC40 with Lustre
(Cluster’17)

Topology-aware aggregator placement taking into account
• The topology of the architecture
• The data access pattern

Capure the data model and data layout to optimize the I/O scheduling
Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
Interconnect architecture abstraction
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Abstractions for Interconnect Topology

I Topology characteristics include:
Spatial coordinates
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns and uncertainties such as routing,
contention

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
(Credit: LLNL / LBNL)



Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A  : Aggregator

C1

C2

I Contention-aware algorithm: static and dynamic routing policies, unknown
vendors information such as routing policy or data distribution among I/O
nodes, ...



TAPIOCA

I Outperfoms MPI I/O on the IO kernel of HACC and two data layouts on a
Cray XC40 + Lustre and BG/Q + GPFS

HACC: Large-scale simulation of the mass evolution of the universe with
particle-mesh techniques (A particle is defined by 9 variables).
1024 nodes, 16 ranks per node
Best PFS configuration for MPI I/O

• Lustre: 48 OST, 8 MB stripe size, 192 aggregators
• GPFS: 16 aggregators per Pset (128 aggr), 16 MB buffer size
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TAPIOCA

I Outperfoms MPI I/O on the IO kernel of HACC and two data layouts on a
Cray XC40 + Lustre and BG/Q + GPFS

HACC: Large-scale simulation of the mass evolution of the universe with
particle-mesh techniques (A particle is defined by 9 variables).
1024 nodes, 16 ranks per node
Best PFS configuration for MPI I/O

• Lustre: 48 OST, 8 MB stripe size, 192 aggregators
• GPFS: 16 aggregators per Pset (128 aggr), 16 MB buffer size
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TAPIOCA - Ongoing research

I Move toward a generic data movement library for data-intensive
applications exploiting deep memory/storage hierarchies as well as
interconnect to facilitate I/O, in-transit analysis, data transformation,
data/code coupling, workflows, ...
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Abstractions for Memory and Storage

I Topology characteristics including
spatial location, distance

I Performance characteristics:
bandwidth, latency, capacity

I Access characteristics such as
byte/block-based, concurrency

I Persistency

Memory API (alloc, store, load, free, …)

Abstraction layer (mmap, pmem, …)

DRAM HBM NVRAM PFS BB

Application

Listing 1: Function prototypes for memory/storage data movements
vo id memAlloc ( vo id ∗bu f f , i n t64_t bu f f S i z e , mem_t mem ) ;
vo id memFree ( vo id ∗bu f f , mem_t mem ) ;
i n t mem{Write , S to r e } ( vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t ) ;
i n t mem{Read , Load} ( vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t ) ;
vo id memFlush ( vo id ∗bu f f , mem_t mem ) ;

I Work in progress with open questions
Bluring boundary between memory and storage (MCDRAM, 3D XPoint
memory, ...)
Some data movements need one or more processes involved at destination
(RMA window, flushing thread, ...)
Scope of memory/storage tiers (PFS vs node-local SSD)
Data partitioning to take advantage of fast memories with smaller capacities



Conclusion

I TAPIOCA, an optimized data-movement library incorporating
Topology-aware aggregator placement
Optimized data movement with I/O scheduling and pipelining
Hardware abstraction insuring performance portability

I Performance portability on two leadership-class supercomputers: Mira
(IBM BG/Q + GPFS) and Theta (Cray XC40 + Lustre)

Same application code running on both platforms
Same optimization algorithms using an interconnect abstraction

I Promising preliminary results with memory/storage abstraction
I An appropriate level of abstraction is hard to define

Specific abstraction for every system including the architecture, filesystems,
capturing every phase of deployment, relevant software versions, ...
Generalized abstraction that maps to current and expected future deep
memory hierarchies and interconnects

I Future work: Come up with a model helping to take smart decision for
data movement
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MPI-IO and TAPIOCA - Data layout
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